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A B C D E F G H I J K L M N

A- Auntie’s Magical Cake

Problem Author: Akarapon Watcharapalakorn

Solved by 20 teams.

First solved after 20 minutes.
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A- Auntie’s Magical Cake

The best strategy is to eat the cakes in order, either from the
leftmost to the rightmost or from the rightmost to the
leftmost. This is because choosing the cake furthest from the
middle will maximize the total deliciousness.

Consider eating the i-th cake, where 1 < i < N/2, and let the
increases in deliciousness from the left-side and right-side
cakes be x and y , respectively.

If you change the position from i to i + 1, the new increases
in deliciousness will be x + i and y − (i + 1). It’s clear that
the total in the first case, x + y , is always higher than in the
second case, x + i + y − (i + 1) = x + y − 1.

The same method can also be applied for cases where
i > N/2.
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A- Auntie’s Magical Cake

Time complexity is O(N).

Can be optimized to O(1) with math.
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B- Back in the Day

Problem Author: Mattanyu Tangngekkee

Solved by 34 teams.

First solved after 14 minutes.
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B- Back in the Day

Divide the number string into several parts, each contain only
one number. For example, 2222888 is divided into 2222 and
888.

For each part, greedily choose the biggest character possible.
Then put the smallest character remained in the front. For
example 2222 becomes ac and 7777777777 becomes qss.
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B- Back in the Day

Alternatively, you can reverse the number string from last to
first, then you can simply cut the string every time it reaches
the highest character for each key number. Then reverse the
answer before outputting.

Be careful, each number contains different amount of
characters. ‘7’ and ‘9’ contains 4 characters each while the
rest contains just 3.

Time complexity is O(|S |).
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B- Back in the Day

Alternatively, you can reverse the number string from last to
first, then you can simply cut the string every time it reaches
the highest character for each key number. Then reverse the
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C- Cattering

Problem Author: Natapong Sriwatanasakdi

Solved by 1 teams.

First solved after 44 minutes.
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C- Cattering

In this problem, we can use binary search to find the
maximum possible value of the minimum happiness for all
cats.

We can determine whether all cats can have happiness value
at least h by maximum bipartite matching.

We build a bipartite graph of cats and foods. There exist an
edge between cat i and food j if and only if Aij ≥ h. All cats
can have happiness value at least h if and only if the
maximum bipartite matching size of this graph is N.

Therefore, we can binary search to find the maximum value of
happiness that all cats can reach. The search is O(logM)
times since there are NM possible values—values in matrix A.

Time complexity is O(Matching · logM).
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C- Cattering

The official solution used Hopcroft-Karp Algorithm for
matching.

Kuhn Algorithm with modifications also works. In each vertex,
try finding an available vertex that it can reach first before
DFS on matched vertices. The algorithm can be further
improved by shuffling edges first.

One of the problem testers also uses Dinic’s Algorithm. While
Dinic’s Algorithm has the same time complexity as
Hopcroft-Karp Algorithm in case of maximum bipartite
matching, the overhead from creating network flow is larger,
hence the actual execution time is significantly slower.
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D- Disinfection Patch

Problem Author: Attitarn Buathep

Solved by 3 teams.

First solved after 111 minutes.
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D- Disinfection Patch

Suppose that minx ,maxx ,miny ,maxy are the minimum and
the maximum value of x and y coordinates for the drops of
disinfection respectively, we can construct a rectangle that
cover all of the drops which have (minx ,miny ) and
(maxx ,maxy ) as the bottom-left and the top-right corner of
the shape.

We can do the same for the bacteria, then compare the ratio
between the length of each side of the two rectangles.

If the ratio are not equal to each other, output −1.
Otherwise, we must scale the disinfection rectangle with the
ratio and shift the corners to the bacteria rectangle.
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We can do the same for the bacteria, then compare the ratio
between the length of each side of the two rectangles.

If the ratio are not equal to each other, output −1.
Otherwise, we must scale the disinfection rectangle with the
ratio and shift the corners to the bacteria rectangle.



A B C D E F G H I J K L M N

D- Disinfection Patch

After that, we check each point by sorting both the scaled
disinfection points and the bacteria points and comparing the
points one-by-one in order.

If the points mismatch, output -1. Otherwise, output the
scale ratio and the shift S ,X ,Y .

There will be some special cases such as when x or y are the
same for all points, so the length of some side of the rectangle
becomes 0.

Time complexity is O(N logN)
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D- Disinfection Patch

After that, we check each point by sorting both the scaled
disinfection points and the bacteria points and comparing the
points one-by-one in order.

If the points mismatch, output -1. Otherwise, output the
scale ratio and the shift S ,X ,Y .

There will be some special cases such as when x or y are the
same for all points, so the length of some side of the rectangle
becomes 0.

Time complexity is O(N logN)
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E- Executive’s Holidays

Problem Author: Mattanyu Tangngekkee

Solved by 0 teams.
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E- Executive’s Holidays

Instead of assigning meeting for the executives, you can think
about reversely assign them the break day.

For the i-th day, if there requires ai executives for the
meeting, then it also means there can be at most N − ai
executives unattended that day.
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E- Executive’s Holidays

We can greedily choose, for each executive, the longest period
possible they don’t have to attend any meeting.

For example, let the quota for executives unattended each day
are [1, 2, 0, 2, 1, 3, 2].
The first executive can only take a break on the day that has
the quota. Therefore he can at most take a break from day 4
to day 7. After that, the quota becomes [1, 2, 0, 1, 0, 2, 1].
The next executive can take a break from day 1 to day 2, and
the quota left will be [0, 1, 0, 1, 0, 2, 1] and so on...

It can be shown that repeating the above process until every
executive’s break is assigned is the optimal strategy, as the
sum of the length of those breaks will always be maximized.

The rest of the unattended quota can be distributed however
since it would not increase the sum.
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E- Executive’s Holidays

It is equivalent to finding the the longest non-zero subarray
and remove one for every item on that subarray. Repeating
the process for N times and the sum of the length of all
subarray is the answer.

Finding the longest non-zero subarray for an array takes
O(T ). Removing one for every member in the subarray also
takes O(T ).

Since you have to repeat the process N times, time
complexity is O(N · T ), which is not fast enough.
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E- Executive’s Holidays

To improve the speed, you can first visualize the problem as a
histogram and partitioned it horizontally.

Figure: The histogram and its partition of the array
[1, 1, 4, 3, 4, 2, 1, 3, 0, 4, 2, 1, 3, 4, 4, 3]

When you sort the partition by its length from longest, it is
the same range as the longest non-zero subarray previously, so
the answer is the sum of the first N partition’s length.

You can obtain such partitions by iterating from left to right
and keep the position and the height in a stack.
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E- Executive’s Holidays

Since the partition count can potentially reach O(N · T ),
there is a need for a slight optimization.

It is unnecessary to slice the partition on every height.
Instead, just partition the histogram into rectangles and
storing its position, its length and its height.

The height represents the amount of the actual slicing.

Figure: Example of an optimized partition.
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E- Executive’s Holidays

The length of each partition cannot exceed T , so you can
store the length in an array length T + 1 to speed up the
sorting and the counting.

Time complexity is O(T )
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The length of each partition cannot exceed T , so you can
store the length in an array length T + 1 to speed up the
sorting and the counting.

Time complexity is O(T )
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F- Fill T

Problem Author: Mattanyu Tangngekkee

Solved by 0 teams.
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F- Fill T

Let R <= C , otherwise you can rotate the grid by 90 degree.

If R = 1 or R = 2, it is obvious that the grid cannot be filled.

For R = 3 and C ≤ 5, it also can be shown that the grid
cannot be filled.

That is all the grids that cannot be filled.
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F- Fill T

Let R <= C , otherwise you can rotate the grid by 90 degree.

If R = 1 or R = 2, it is obvious that the grid cannot be filled.

For R = 3 and C ≤ 5, it also can be shown that the grid
cannot be filled.

That is all the grids that cannot be filled.
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F- Fill T

For R = 3 and C ≥ 6, the grid can be filled with the pattern
below.
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F- Fill T

For R = 4, the grid can be filled with the pattern below.
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F- Fill T

For R = 5 and C = 5, 6, or 7, the grid can be filled with the
pattern below.
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F- Fill T

For R = 5 and C ≥ 8 or R ≥ 6, you can use 3 pieces of
T -shape to form the border so that you can recursively fill out
the (R − 2)× (C − 2) grid with the pattern below.

Time complexity is O(max(R,C ))



A B C D E F G H I J K L M N

F- Fill T

For R = 5 and C ≥ 8 or R ≥ 6, you can use 3 pieces of
T -shape to form the border so that you can recursively fill out
the (R − 2)× (C − 2) grid with the pattern below.

Time complexity is O(max(R,C ))
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G- Glory Road

Problem Author: Mattanyu Tangngekkee

Solved by 45 teams.

First solved after 12 minutes.
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G- Glory Road

Let the vertices of the triangle be (Ax ,Ay ), (Bx ,By ) and
(Cx ,Cy ) and the midpoint of each side be (Px ,Py ), (Qx ,Qy )
and (Rx ,Ry ).

You can write the system equation as follows:



Ax + Bx

2
= Px

Bx + Cx

2
= Qx

Ax + Cx

2
= Rx



Ay + By

2
= Py

By + Cy

2
= Qy

Ay + Cy

2
= Ry
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G- Glory Road

The system equation has a solution of:
Ax = Px − Qx + Rx

Bx = Px + Qx − Rx

Cx = −Px + Qx + Rx


Ay = Py − Qy + Ry

By = Py + Qy − Ry

Cy = −Py + Qy + Ry

Just be careful about the order of the input and the output.

Time complexity is O(1).
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H- Heavenly Sequence

Problem Author: Poonyapat Sriroth

Solved by 0 teams.
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H- Heavenly Sequence

First, it is obvious that we will only choose the maximum X
(by choosing X = R).

A sequence is considered Heavenly if and only if every
permutation of every subsequence is Good.

In other words, a sequence is Heavenly if, when we pick any
numbers in any order from the sequence to create a new
sequence, that new sequence is also Good.
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(by choosing X = R).
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H- Heavenly Sequence

By using the rearrangement inequality (or through
mathematical observation), we can simplify the definition of
Heavenly to:

Lemma 1

A sequence b[1], b[2], b[3], . . . , b[n] is Heavenly if and only if,
after sorting the sequence, for each i ≤ j , the subsequence
b[i ], b[i + 1], b[i + 2], . . . , b[j ] is Good.

This lemma can be proven by fixing the maximum and
minimum of the new sequence and then maximizing the
right-hand side of the inequality.

This is achieved by selecting every value between the
maximum and minimum and sorting that sequence.
Considering all possible maximum and minimum values and
combine everything will results in above observation.
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H- Heavenly Sequence

Suppose the sorted sequence is b[1], b[2], b[3], . . . , b[n]. Given
the previous observation, there are still many Good sequences
to consider.

However, we can reduce this by noting that:

Lemma 2

If b[1], b[2], b[3], . . . , b[j ] is Good, then for any i with i ≤ j , the
subsequence b[i ], b[i + 1], b[i + 2], . . . , b[j ] is also Good.
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H- Heavenly Sequence

Thus, we only need to consider K such that for every j (where
j ≤ N), b[1], b[2], b[3], . . . , b[j ] remains Good.

To achieve this, we need to find K that satisfies the inequality
(we know that the minimum is b[1] and maximum is b[j ]):

K · b[1] ≥ b[j ]2 +

j−1∑
i=1

b[i ] · b[i + 1]− X · b[j ]

for j = 2, 3, . . . ,N.
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H- Heavenly Sequence

Consequently, we seek a data structure that can efficiently
solve the right side of the inequality to find the minimum K :

K · b[1] ≥ max

(
b[j ]2 +

j−1∑
i=1

b[i ] · b[i + 1]− X · b[j ]

)

for j = 2, 3, . . . ,N.

The right side of this inequality requires us to find the
maximum value of linear equations at specific points. Since
this operation must be performed online (both inserting lines
and retrieving answers), one suitable data structure for this is
the lazy Li Chao tree. You can learn more about it at
https://codeforces.com/blog/entry/86731

https://codeforces.com/blog/entry/86731
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H- Heavenly Sequence

It’s important to note that when we add new elements to the
sequence, it may seem that we need to update almost every
line. However, we can efficiently update only a few lines by
using range addition.

Time complexity is O(N log2N)
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I- Ideal Permutation Pairing

Problem Author: Mattanyu Tangngekkee

Solved by 4 teams.

First solved after 81 minutes.
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I- Ideal Permutation Pairing

Let P is a permutation size N have a rank of p if it is the p-th
smallest permutation of size N. For shorten, we can say that
rank(P) = p.

Lemma

Let P = p1p2p3 . . . pN and Q = q1q2q3 . . . qN be permutations of
size N. If rank(Q) = rank(P) + t · (N − k)! for some k and t, then
pk+1pk+2 . . . pN and qk+1qk+2 . . . qn have the same ordering.
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I- Ideal Permutation Pairing

Lemma

Let P = p1p2p3 . . . pN and Q = q1q2q3 . . . qN be permutations of
size N. If rank(Q) = rank(P) + t · (N − k)! for some k and t, then
pk+1pk+2 . . . pN and qk+1qk+2 . . . qN have the same ordering.

Proof

We can prove by induction from k = N → 1. The k = N part is
obvious. If F (k) is true, considering the possible value of pk if
p1p2 . . . pk−1 is fixed, there are N − k + 1 possibles candidates,
which also is the list [pk , pk+1, . . . , pn]. That means if
rank(Q) = rank(P)+t ·(N−k)! = rank(P)+t ·(N−k−1)·(N−k)!,
the rank of pk among the list [pk , pk+1, . . . , pn] and the rank of qk
among the list [qk , qk+1, . . . , qN ] is equal, making pkpk+1 . . . pN
and qkqk+1 . . . qN have the same ordering, thus F (k − 1) is true.
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I- Ideal Permutation Pairing

Lemma

Let P = p1p2p3 . . . pN and Q = q1q2q3 . . . qN be permutations of
size N. If rank(Q) = rank(P) + t · (N − k)! for some k and t, then
pk+1pk+2 . . . pN and qk+1qk+2 . . . qN have the same ordering.

Since there are N! permutations size N in total, if P and Q
forms an ideal pair and P is smaller than Q, then
rank(Q) = rank(P) + N!

2 .

Because N!
2 can be written as N·(N−1)

2 · (N − 2)!. Thus,
p3p4 . . . pn and q3q4 . . . qN have the same ordering.
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I- Ideal Permutation Pairing

To find the value of q1 and q2, think of it as sorting pairs of
u, v where 1 ≤ u ̸= v ≤ N.

If p1, p2 has the rank of x , then:

x = (p1 − 1) · (N − 1) + p2 if p1 < p2.
x = (p1 − 1) · (N − 1) + (p2 − 1)1 if p1 > p2.

The rank of q1, q2 is x ′ = x + N·(N−1)
2 mod N · (N − 1),

which, conversely, can be used to find the value of q1, q2 by:

q1 = 1 + ⌊ x′−1
N−1 ⌋

q′2 = 1 + (x ′ − 1) mod (N − 1)

q2 = q′
2 if q1 < q′

2.
q2 = q′

2 + 1 if q1 ≥ q′
2.
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I- Ideal Permutation Pairing

To find the value of q3q4 . . . qN , first you find the rank of
[p3, p4, . . . pN ] for each member among the list.

Then, you find the rank for each member of
{1, 2, 3, . . . ,N} − {q1, q2}.
For each i , find qi such that rank(qi ) = rank(pi ), this can be
done in O(1) with counting sort.

Time complexity is O(N).
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J- Jewel Collection

Problem Author: Mattanyu Tangngekkee

Solved by 0 teams.
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J- Jewel Collection

This is not a maximum weight edge cover problem.

This is not a FLOW problem either.

Still, it is a graph problem.
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J- Jewel Collection

Since each jewel can only feature up to two colors. You can
model a graph for this problem as follows:

Each color is a node.
Each jewel is an edge connecting two colors that it features. If
the jewel only contains one color, then it is a self-loop on that
color. The price is the weight of the edge.

Figure: Graph of the first example.
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J- Jewel Collection

So what exactly do we want ?

A valid collection will always form a maximal pseudoforest, a
subgraph that spans every node and each component contains
exactly one cycle.

Figure: Example of a maximal pseudoforest.

Therefore, you need to find a maximal pseudoforest with the
maximum sum.
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J- Jewel Collection

It can be done similarly to Kruskal’s algorithm for MST.

But instead of each set contains a tree, allow them to contain
at most one cycle.

It is impossible to make a collection if one of the connected
component of the graph that is a tree.

To print the matching, just do a simple DFS until you find a
cycle.

Time complexity is O(N logN)
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K- Kid Rally

Problem Author: Attitarn Buathep

Solved by 2 teams.

First solved after 186 minutes.
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K- Kid Rally

Let us assume that Alice be the one starting at (1, 1) and Bob
starting at (1,M).

If Alice is at (a, b), it can be shown that if she decide to move
forward optimally, her new X coordinate will increase by
exactly 1. Same goes for Bob.

Generally speaking, until one of them stops moving, Alice’s
and Bob’s move will increase one X coordinate at a time.

Moreover, at the same X coordinate, Alice will have to be on
the left side of Bob.
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K- Kid Rally

Let us define DP[x ] as the maximum points Bob can get
when Alice has x points.

For each coordinate X valued u, we update DP[v + s[u][i ]]
with the value of
DP[v ] + max(s[u][i + 1], s[u][i + 2], ..., s[u][M]) if it is higher
than its current value.

Right now, time complexity should be O(MaxValue · N ·M),
but we can reduce to O(MaxValue · N) by observing that
there are at most only 10 values per coordinate X that we
must consider.
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K- Kid Rally

There are some special cases. For example, considering this
map grid size 2× 2:

9 1
9 0

In this particular grid map, the optimal way is for Alice to stay
at (1, 1) ,earning a score of 9 while Bob moves from (1, 2) to
(2, 1), earning a score of 10. Hence, the final score becomes
90.
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L- Lulu and Friends

Problem Author: Supakorn Kijwattanachai

Solved by 23 teams.

First solved after 6 minutes.
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L- Lulu and Friends

With very low constraints on string, almost any brute forces
should work.

For string matching, we can do two pointers technique.

We will maintain a pointer at string T and we will move the
pointer until the character match with the current character
in S , then we move the pointer on S and so on.

The minimum deletion is |S | − (last − first) where last is the
final position of pointer in the string T and first is the first
position of pointer.

This can be done in O(|S |+ |T |) and do it from every first
matched position will result in O(|T ||S + T |) per query.
Or you can generate all 2|T | possible strings from deletion and
memorize the answer.
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In this problem, the town can be visualized as a tree that have
villages as vertices. Each bidirectional road between two
villages is an edge.

Each edge should contain the detail about the shop on the
road — it can be described by the pearl type and the
purchase limit.
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For naive solution, We store the price of each pearl type in an
array. For every type 2 event, we simply update the
corresponding price in the array, which can be done in
constant time.

For each type 1 event, we can perform a breadth-first search
(BFS) or depth-first search (DFS) from vertex x to find a
path to vertex y .

Let P be the set of edges along this path. Let ei be edge i .

For each pearl type j that appears on the path, total expense
is calculated as ∑

ei∈P,ai=j

bi · cj
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Finding the expense for each type and determining the
maximum expense among all types takes O(N) time, where N
is the number of vertices.

Therefore, the overall time complexity for all queries is O(NQ)

We can optimize this approach by rooting the tree and letting
each vertex store the path to its parent.

To find a path from x to y , we can first determine the lowest
common ancestor (LCA) of x and y , then traverse from x to
the LCA and from y to the LCA.

While this improves the performance, the overall time
complexity remains O(NQ).
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If the tree is a simple line, the problem can be efficiently solved
using Mo’s Algorithm with Updates. You can learn more
about it at https://codeforces.com/blog/entry/72690.

In this scenario, we track the number of pearls available , the
unit price, and the total price for each pearl type.

We also maintain the total expenses for all pearl types using a
multiset, allowing us to easily update and query the maximum
expense.

This solution achieves a time complexity of O(QN
2
3 logN).

https://codeforces.com/blog/entry/72690
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For general cases, we can use the Euler Tour Technique
(ETT) to flatten the tree.

We perform DFS on the tree starting from any root vertex.
Before starting, we initialize three variables: turn, tout, and
tour .

turn : keeps track of the current DFS step.
tout[ ] : is an array that records the DFS exit time for each
vertex.
tour [ ] : is a list that tracks the edges traversed during the
DFS.
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Initially, turn is set to 0. Every time we enter or exit a vertex,
we increment turn.

When moving from a parent to a child vertex, we append the
corresponding edge to tour .

Similarly, when returning from a child to its parent, we
append the edge again and update tout[child ] to the current
value of turn.

Figure: DFS traversal of the example tree. Blue numbers represent the entry turn.
Red numbers represent the exit turn.



A B C D E F G H I J K L M N

M- Marriage Proposals

Initially, turn is set to 0. Every time we enter or exit a vertex,
we increment turn.

When moving from a parent to a child vertex, we append the
corresponding edge to tour .

Similarly, when returning from a child to its parent, we
append the edge again and update tout[child ] to the current
value of turn.

Figure: DFS traversal of the example tree. Blue numbers represent the entry turn.
Red numbers represent the exit turn.



A B C D E F G H I J K L M N

M- Marriage Proposals

Initially, turn is set to 0. Every time we enter or exit a vertex,
we increment turn.

When moving from a parent to a child vertex, we append the
corresponding edge to tour .

Similarly, when returning from a child to its parent, we
append the edge again and update tout[child ] to the current
value of turn.

Figure: DFS traversal of the example tree. Blue numbers represent the entry turn.
Red numbers represent the exit turn.



A B C D E F G H I J K L M N

M- Marriage Proposals

Consider the scenario where we want to travel from vertex x
to vertex y such that tout[x ] < tout[y ].

Let l = tout[x ] and r = tout[y ]. An edge e is part of the path
if and only if it appears exactly once in the subarray
tour [l . . . (r − 1)].
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For example, when traveling from vertex 3 to vertex 5, we
have l = 3 and r = 8.

The path from vertex 3 to vertex 5 is 3 → 2 → 1 → 5,
corresponding to the edges 2 → 1 → 4.

The subarray tour [3 . . . 7] is [2, 3, 3, 1, 4].

The edges that appear exactly once in this subarray are edges
2, 1, and 4, which match the set of edges in the actual path
from vertex 3 to vertex 5.
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Using this observation, we can now apply Mo’s Algorithm
with Updates.

For each type 1 event, we query the edges between x and y
by examining those that appear exactly once in
tour [l . . . (r − 1)], where l = min(tout[x ], tout[y ]) and
r = max(tout[x ], tout[y ]).

Extending this from the line graph case, we track the
appearance count of each edge in the subarray to update pearl
quantities and total expenses correctly.

Time complexity is O(QN
2
3 logN).
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The O(logN) factor from using a Balanced Binary Search
Tree (BBST) can slow down the solution, especially given the
overhead of maintaining the BBST structure.

To overcome this, we can replace the BBST with a data
structure that supports updates in O(1) and queries the
maximum value in O(

√
MaxValue), where MaxValue is the

maximum possible value in the set.

In this problem, the total expense cannot exceed 107, since
the unit prices are capped at 1,000 dollar and the purchase
limits for each type of pearl do not exceed 10,000.
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The new data structure uses two arrays:

count[ ] : Tracks the frequency of each expense value.
blockCount[ ] : Tracks the number of elements in blocks of
size ⌈

√
MaxValue⌉, where block b covers a range of values

from b⌈
√
MaxValue⌉ to (b + 1)⌈

√
MaxValue⌉ − 1.

When querying the maximum value, we first find the highest
non-zero block in blockCount.

After identifying the block, we search through count for the
exact maximum value.

Both the number of blocks and the elements within each
block are bounded by O(

√
MaxValue).

This allows our algorithm to run in O(QN
2
3 + Q

√
MaxValue).
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Lemma 1

For any prime number p if gcd(y , p − 1) = 1, then f (a) = ay

(mod p) maps {1, 2, . . . , p − 1} to {1, 2, . . . , p − 1}.

Proof

Suppose not for contradiction. Then, there are
c , d ∈ {1, 2, . . . , p − 1} such that cy ≡ dy (mod p). Let z be a
natural number that yz ≡ 1 (mod p) (exists by Bézout’s identity).
Raising both sides by z and using Fermat’s little theorem yields

c ≡ (cy )z ≡ (dy )z ≡ d (mod p)

Thus, a contradiction.
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Lemma 2

If x , y are two natural number such that
gcd(x , p − 1) = gcd(y , p − 1), then f (a) = ax and g(a) = ay has
the same image.

Proof

We can write ax = (a
x

gcd(x,p−1) )gcd(x ,p−1). The inner part preserves
the whole domain, so the image is only affected by gcd(x , p − 1).

We can solve the problem from these two lemmas by iterating
the divisor of p − 1 and computing the image of ad . Then we
can multiply their contribution and get the desired result.

Time complexity O(pd(p − 1) log p)
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For another solution, Since (Z×
p ,×) ∼= (Zp−1,+), the problem

reduces to:

Given a natural number n, compute the number of pairs (a, b)
such that 0 ≤ a, b ≤ n − 1 and ab ≡ k (mod p).

We can solve this easily by dividing the number between
0 → n− 1 into groups based on their greatest common divisor
with p − 1.

Elements from the same group will have the same answer, and
we can compute from their class instead.
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To convert back, we need a map between (Zp−1,+) to
(Z×

p ,×).

Since both are a cyclic group, we can convert elements if we
can find one generator (primitive root, in number theory
language).

If p is the generator, then we can map (Zp−1,+) to (Z×
p ,×)

by a 7→ pa.

To find primitive root, you can simply check each element
whether it generates the group or not.

Time complexity is O(p log p + d(p − 1)2) = O(p log p).
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by a 7→ pa.

To find primitive root, you can simply check each element
whether it generates the group or not.

Time complexity is O(p log p + d(p − 1)2) = O(p log p).
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