
ICPC 2024 Internal Solution
Sketch

C: Chopstick (39/39)

Just select the top two longest pairs of chopstick.

Bruteforce: Calculate area from every two different pairs.

Sort: Sort and select two maximum values.

Linear: Find two maximum values by looping array.

C: Chopstick

Common mistakes: Integer overflow!!!

(max answer 1018, maximum value of int is ~ 2*109).

Solution: Use long long or python.

E- Hidden Project (33/39)

For any given day, one is either do the project or do the
normal work.

Observe that If we choose to do project for a total of K days,
it is best to do the project on K consecutive days for K(K+1)/2
Bath instead of splitting into several project with shorter
duration.

The best strategy is to either

1) conduct the project once, starting on the 1st day and
finishing on the Nth day, and receive N(N+1)/2 baht, or

2) not conduct any project and receive N*a baht. Doing the
project often will have the income start from 1 baht again, so
doing the project as long as possible is always better.

Hence, the answer is max(N*a, N(N+1)/2).

Is
better
than

G: Ki Chang Jab Takkataen (8/39)

Greedy strategy: Catch nearest grasshoppers possible by
shortest nets possible.

Detail: We sort all nets by length. Then, we try to catch
grasshoppers from 1 to N respectively. If there is a net that
can catch a grasshopper i, catch it with a shortest net, then
disable the net. This way, we can find the earliest
grasshoppers for any possible amount.

G: Ki Chang Jab Takkataen

Proof: The proof is left as an exercise for the contestant.

(Hint) Suppose that there is an optimal catching that does not
follow our strategy i.e. not catching the same grasshoppers or
not using the same net, prove that we can change nets or
grasshoppers to match our strategy.

K: A Potion Shopping on This Wonderful World! (6/39)
This problem is just a knapsack problem, but the operation
on weight is bitwise OR instead of addition!

For a set of stat types, we represent it as an integer.
The ith bit will be 1 if and only if it is in the set. We
call it value of a set.

Formally, the value v of set s is sum of 2x for every stat
type x that is in s.

Let DP[mask] be the least cost for obtaining stat types set
mask.

K: A Potion Shopping on This Wonderful World!

First, we set all DP of all possible sets to infinity,
except DP[0] = 0

Then, for each item i, suppose the buff stat types set is
value x, for each stat type set s in all possible stat type
set, let it valued mask. We update

DP[mask | x] = min(DP[mask | x],
 DP[mask] + (cost of item i))

where "|" is bitwise OR.

K: A Potion Shopping on This Wonderful World!

After we update DP using all items, for each set s, we must
also consider the DP value of its super set.

This can be done by iterating set with largest value to
smallest value. For each set valued Mask, for each its
element i, we update

DP[Mask - 2i] = min(DP[Mask], DP[Mask - 2i]).

Time complexity: O(4K)

Bonus: Find a solution with O(3K)

H: Final Quiz (6/39)

I) n = 3t

There are t groups of three questions that you have to
choose an answer for each group that cannot be the same as
the previous one.

Answer = k(k-1)^(t-1)

H: Final Quiz

II) n = 3t+1

There are t groups of three questions and 1 group of one
question. There are t+1 ways to arrange the group. For t+1
groups, you have to choose an answer to not be the same as
the last one.

Answer = (t+1)k(k-1)^t

H: Final Quiz

III) n = 3t+2

There are two possible way to split the group.

A) t groups of three questions and 1 group of two questions.

There are (t+2)(t+1)/2 ways to arrange the group. For t+2 groups, you have
to choose an answer to not be the same as the last one.

B) t groups of three questions and 2 group of one question.

There are t+1 ways to arrange the group. For t+1 groups, you have to choose
an answer to not be the same as the last one.

Answer = (t+1)k(k-1)^t + (t+2)(t+1)/2*k(k-1)^(t+1)

A: Card Dealer Game (5/39)

Order of the deck doesn't matter. You just have to calculate
that the blue card is pick even times.

You can calculate that by using dynamic programming.

DP[i] = DP[i-1]*p_i/(p_i+q_i) + (1-DP[i-1])*q_i/(p_i+q_i)

A: Card Dealer Game (cont.)

If ax = 1 mod p, then x = a^(p-2) mod p.

Or in python you can just use pow(a,-1,p)

I: Lulu and the Magical Array (5/39)

Creating new array b of length n-1 such that

b[i] = a[1] ⊕ a[i + 1] for i = 1 to n - 1

The answer is minimum of (minimum of array b and minimum
between any XOR pair of array b)

I: Lulu and the Magical Array

You can do data structure like Trie to find minimum bitwise
XOR pair in array b.

I: Lulu and the Magical Array

The simpler solution is just sort the array b and find

minimum of b[i] ⊕ b[i + 1] for i = 1 to n - 2

The intuition behind this is the adjacent pair in the sorted
array has the most similar bit in significant order or just
prove this equation

If (a <= b <= c), min(a ⊕ b, b ⊕ c) <= a ⊕ c

I: Lulu and the Magical Array
The python code surely looks short, right?

F: Portal Maintenance (1/39)

Given a weighted tree, you can add edge from u,v with weight
dist(u,v)+c. Find the minimum cost to make the graph has
euler cycle.

F: Portal Maintenance (1/39)

DFS on tree and match the nodes with odd degree to cover the
whole tree.

Total cost = sum of all weight + c * # odd nodes / 2

B: Emma and the Pixie Dust (1/39)

Observe 1 : Combining k+1 elements together to get k pixie
dust is the most effective way.

From Observe 1 : The problem becomes choose k+1 from m
elements then find GCD of them, then add this to sum of the
maximum n-k-1 elements from m-k-1 elements left

Observe 2 : Let a[1],a[2],...,a[k+1] be the increasing array
of numbers that we want to merge and b[1],b[2],...,b[n-k-1]
be the increasing array of numbers that we just add to the
sum. The most effective way must have a[k]<b[1].

B: Emma and the Pixie Dust (Continue)

From Observe 2 : We divide into 2 cases.

Case 1 a[k+1]<b[1] : We know that array b must be the
largest n-k-1 elements from original m elements.

Case 2 a[k+1]>b[1] : We know that array b must be the
largest n-k elements that is not a[k+1]

From 2 cases, we just have to find the largest GCD of k+1
elements from the unchosen m-(n-k-1) elements. => O(nlogn)

J: Rook Placement (0/39)
Look at column E. The valid
cells are prefix [1-4]E and
suffix [8-10]E.
For the prefix and suffix,
we need to count the number
of empty rows. (Rows
2,4,9,10)

J: Rook Placement

- For each column, maintain empty prefix and suffix.
- maintain the index of empty rows.
- We need to update the answer when prefix and suffix

changed or row became empty or non-empty.
- For example, when a row became non-empty, you need

to subtract the answer equal to number of prefixes
which covered that row and do the same for suffix.

J: Rook Placement

- To maintain prefix and suffix of each column, you
simply need to maintain first and last elements in
that column. (min, max) This can be done by std::set

- There are O(1) changes in prefix, suffix, and row.
So you need a simple counting data structure to
update the answer. e.g. (Fenwick Tree or Segment
Tree)

- The range of input is large, so you may need to
compress the coordinate of the input. But the well
written solution with dynamic data structures can be
passed as well.

J: Rook Placement

- The previous explanation
are for column counting,
but row counting is
symmetry. You can simply
rotate the grid by 90
degree and run the same
algorithm. (i.e. changing
input from

- (x, y) to (y, x)

J: Rook Placement

Even more simple, you can only consider prefix and
column counting only. Then transform the input in
4 cases and run the same algorithm on all of them.
-> r c (x, y)
-> r c (r - x + 1, y)
-> c r (y, x)
-> c r (c - y + 1, x)
Time complexity: O(n log(n))

D: Animal Circus (0/39)

If there is only one query you can solve this problem with
binary search as you can check an answer if it valid or not
because the more cage you use, the more animals you miss.
Assume that our guessing for answer (number of cage) is ANS
you can check validation of our guessing by doing following
step.

D: Animal Circus

1. For every type of animal if the number of animals of
that type a_i is greater than ANS can only take ANS
animals of this type because there is only Ans cage we
can use.

2. And for every type of animal the number of animals of
that type is less than or equal to ANS can only take a_i
animals.

D: Animal Circus

3. Let the number of animals we can take from the previous
step equal X.

4. If X is greater than or equal to K x ANS We'll be sure
that you can use ANS Cage.

5. Otherwise, you can't use ANS Cage

D: Animal Circus

These steps can be done naively in O(N) but in this problem, you
must update several animals and answer multiple queries online
(Because you need to XOR query by the previous answer).

Before that, you need to find out how to calculate X fast.

We know that if the number of animals exceeds ANS you can only
take ANS animals so if we look closely, we'll have the equation
of calculating X. Let c = number of i such that a_i > ANS, and
sum = sum of a_i of animal type such that a_i <= Ans then X = sum
+ c * Ans we have the data structure that can quickly update and
find range sum like segment tree. However, since the answer can
be at most 2e14 our segment tree must be dynamic (i.e. you'll
initialize new memory only if necessary).

D: Animal Circus

Then we can have time complexity for each query of O(logMAX)
where MAX is the maximum possible answer which may be fast
enough to pass but you can optimize time complexity to
O(logMAX) by binary search and traverse in segment tree
simultaneously. (There might be an integer overflow problem
by using this method, so you need to set a bound when you
traverse in the segment tree)

Authors

Problem Author

A - Card Dealer Game Mattanyu Tangngekkee

B - Emma and the Pixie dust Poonyapat Sriroth

C - Chopsticks Natapong Sriwatanasakdi

D - Animal Circus Akarapon Watcharapalakorn

E - Hidden Project Akarapon Watcharapalakorn

F - Portal Maintenance Mattanyu Tangngekkee

Authors

Problem Author

G - Ki Chang Jab Takkataen Natapong Sriwatanasakdi

H - Final Quiz Mattanyu Tangngekkee

I - Lulu and the Magical Array Supakorn Kijwattanachai

J - Rook Placement Mattanyu Tangngekkee
Supakorn Kijwattanachai

K - A Potion Shopping On This
Wonderful World!

Natapong Sriwatanasakdi

